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Introduction

• Motivation: Problems
• Retraining Problem: the cost of re-training is 

high and is sometimes not affordable.
• Data Collection Problem: collecting sufficient 

faces to training a good classifier is impractical.
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Introduction

• Idea of FaceNet
• A face recognizer generally consists of two stages

• Feature Extraction: describe a face in an effective way.
• Classification: assign an identifier to a face
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Introduction

• Idea of FaceNet
• de-couple two face recognition stages
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Feature Extraction Face Classification

• FaceNet is a CNN just for feature extraction but not 
for classification.

• Face classification is achieved by using simple and 
training-free algorithms.
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Introduction

• Benefit from FaceNet
• The trained FaceNet is applicable to any face 

applications without re-training.
• The use of FaceNet makes the number of faces 

necessary for face-related tasks small
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Euclidean Embedding

• FaceNet Architecture 
• maps a face clip to Euclidean space
• makes the similarity measure possible.
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Euclidean Embedding

• FaceNet Architecture 
• Formal Description: maps a face to a -

dimensional unit vector ଵ ଶ ௗ
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Euclidean Embedding

• FaceNet Architecture 
• Formal Description: maps a face to a -

dimensional unit vector ଵ ଶ ௗ
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FaceNet Architecture

L2-Norm.Deep CNN
Deep CNN (d=128)
• Style Network
• Inception Type Network

• M. D. Zeiler and R. Fergus, “Visualizing and Understanding Convolutional Networks,” 
CoPR, 2013 

• C. Szegedy, et. al. “Going Deeper with Convolutions,” CoPR, 2014 



Euclidean Embedding

• FaceNet Architecture 
• Objective: provide discriminative embedding

• faces of the same person have small distances
• faces of distinct persons have large distances  
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Euclidean Embedding

• Triplet Loss
• It is a loss defined in embedding feature space.

• be independent of faces to be recognized
• be trained by using off-the-shelf face datasets
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Euclidean Embedding

• Triplet Loss
• models embedding discriminability on a triplet 

௔ ௣ ௡
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Euclidean Embedding

• Triplet Loss 
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Euclidean Embedding

• Triplet Loss
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• Motivation
• Using all possible triples for training leads to 

slow convergence.
• It selects hard triplets for training to ensure fast

convergence.

Triplet Selection
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Triplet Selection

• Intuitive Selection
• find the hardest positive ௣ and negative ௡ to 

an anchor ୟ. 
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drawback: poor training 
reason: poorly imaged faces would dominate the selection 



Triplet Selection

• Online Generation
• mini-batch generation: sample training dataset to 

generate mini-batch around 1800 faces
• around 40 faces per identity 
• randomly sampled negative faces

• triplet formation: form all possible anchor-
positive-negative triplets within the mini-batch.
• use all anchor-positive pairs in mini-batch
• randomly take a semi-hard negative (within margin)
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Triplet Selection
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