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Introduction

e Motivation: Problems

* Retraining Problem: the cost of re-training 1s
high and is sometimes not affordable.

 Data Collection Problem: collecting sufficient
faces to training a good classifier 1s impractical.
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Introduction

e [dea of FaceNet

* A face recognizer generally consists of two stages
 Feature Extraction: describe a face in an effective way.

* Classification: assign an identifier to a face

Feature Extraction — Face Classification poww
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Introduction

e [dea of FaceNet

* de-couple two face recognition stages

Feature Extraction -9 Face Classification
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Introduction

* Benefit from FaceNet
* The trained FaceNet 1s applicable to any face
applications without re-training.
* The use of FaceNet makes the number of faces
necessary for face-related tasks small

verification = thresholding classification = nearest neighborhood
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* FaceNet Architecture f(.)
* maps a face clip to Euclidean space

* makes the similarity measure possible.
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Euclidean

Embedding @ @

(FaceNet)

@ (+0. 7)
+0.4
>
x1: hair length short long X1
X, : skin color
dar}?)
-— Nl‘cfusfccg




Euclidean Embedding

* FaceNet Architecture f(.)

* Formal Description: maps a face X to a d-
dimensional unit vector f(x) = (X1, X5, ... Xg4)

FaceNet Architecture f )|, = 1.0
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performs embedding  constraints embedding

X = (X1, X9, ...Xgq) (%1, %0, o XD, =1 d-dimensional
hypersphere
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Euclidean Embedding

* FaceNet Architecture f(.)

* Formal Description: maps a face X to a d-
dimensional unit vector f(x) = (X1, X5, ... Xg4)

FaceNet Architecture

Deep CNN (d=128)

PR ..o Style NetWOI'k LZ_Norm.

PSS e Inception Type Network

¥ M D. Zeiler and R. Fergus, “Visualizing and Understanding Convolutional Networks,”
7 CoPR, 2013

¢ C. Szegedy, et. al. “Going Deeper with Convolutions,” CoPR, 2014 ’ ‘\_l)f\[;fum”



Euclidean Embedding

* FaceNet Architecture f(.)
* Objective: provide discriminative embedding
* faces of the same person have small distances

* faces of distinct persons have large distances

FaceNet
Architecture
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* Triplet Loss

Euclidean Embedding

* It 1s a loss defined 1n embedding feature space.

* be independent of faces to be recognized

* be trained by using off-the-shelf face datasets

FaceNet
Architecture

LFW Dataset
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Euclidean Embedding

* Triplet Loss

* models embedding discriminability on a triplet
(x4, xP,x")

Xa
anchor image

xP . FaceNet
positive image _ “ Architecture

A(x?,xP) = [If(x9) = FxPI
e TN (x%,xP) = [Ifx®) - F(xP)1
negative image ? d(x%, x™) = ||f(x%) — F(xM)||2
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Euclidean Embedding

* Triplet Loss

Loss(x%,xP,x™")

= max{d(f(x9), F(xP)) + & — d(f(x?), f(x™)), 0]

f(x*)

. N
a margin %
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Euclidean Embedding
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Triplet Selection

e Motivation

* Using all possible triples for training leads to
slow convergence.

* It selects hard triplets for training to ensure fast
convergence.
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Triplet Selection

e Intuitive Selection

* find the hardest positive X¥ and negative X" to
an anchor x°.

& = argmax [If () — f&PIl %" = argmin || (x*) — Fx)]]
Fox >9 F&x)

e f@&xP) @
drawback: poor training
reason: poorly imaged faces would dominate the selection
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Triplet Selection

* Online Generation
* mini-batch generation: sample training dataset to
generate mini-batch around 1800 faces
* around 40 faces per 1dentity
* randomly sampled negative faces
* triplet formation: form all possible anchor-
positive-negative triplets within the mini-batch.
* use all anchor-positive pairs in mini-batch

* randomly take a semi-hard negative (within margin)
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Triplet Selection

Sampling

all negatives ©

FaceNet

xP
positive image g
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